Introduction
This is the final installment of a three-part deep dive into a single assessment item the GRIP team designed to probe students’ knowledge of the student learning objectives (SLOs). Item 15301 was written for the purpose of investigating SLO 3, Secondary Geometry Understanding: Understand the ideas underlying the typical secondary geometry curriculum well enough to explain them to their own students and use them to inform their own teaching. The item asks:
Mr. Gómez taught students the usual procedure for constructing a perpendicular bisector for a segment. Veronica asked Mr. Gómez to explain why the construction works, meaning how they can be sure that the line that is constructed is indeed perpendicular to the segment and passes through the midpoint. How could Mr. Gómez explain that?
In the first two parts of this deep dive, I discussed this item from an a priori perspective. I observed that this item actually consists of multiple nested questions. First, there is the question posed to Mr. Gómez by Veronica within the situation of teaching; I refer to this as the “internal question.” Second, there is the question posed to the GeT students themselves about the situation of teaching; I call this the “external question.” In addition to these two questions, I also discussed various “foundational questions” about the mathematics of geometric constructions.
In what follows, I briefly summarize some of the main ideas of that a priori analysis and use those main ideas to propose a collection of codes for themes that we might expect to find represented in students’ responses to item 15301. These codes will then be used to examine two sources of data: first, a collection of responses to item 15301 produced by a cohort of 47 GeT students; and second, a collection of comments on item 15301 from a group of experienced GeT instructors who participated in a workshop in Summer 2021. These data sources will allow us to explore the following questions:
- What themes are represented in students’ responses to item 15301?
- What themes did the GeT instructors anticipate would or could be present in students’ responses?
- What did GeT instructors notice when they were given the opportunity to examine students’ responses directly?
We begin with a very brief review of some of the ideas developed in the first two parts of this analysis. In the first part, I sought to problematize the foundational question “Can we construct a perpendicular bisector?” as follows:
- First, I observed that the answer to the questions “Can we construct a given geometric object, and, if so, how?” depends, in a highly nontrivial way, on what axiomatization we use for our geometry. For example, in a “compass and straightedge” geometry (as in Euclid’s Elements), angle trisectors cannot be constructed at all; however, in more modern “ruler and protractor” geometries, their construction is trivial. Even for the case of the construction of a perpendicular bisector, which is possible in both systems, the question of how to enact such a construction differs significantly between the two systems.
- Second, from a rather literal point of view, no geometric construction ever perfectly produces its intended object. Any construction inevitably falls short because of two categories of limitations: (a) user error, such as an unsteady hand, a ruler that slips on the page while a line is being drawn, etc.; and (b) intrinsic limitations owing to the fact that the “points” and “lines” we draw (and draw on) are not really points and lines but merely symbolic representations of them. For this reason, the physical marks drawn on actual paper (or in a digital representation) are never more than approximations of the conceptual objects they represent.
- This last observation, regarding the mismatch between idealized geometric objects and actual drawings, cuts both ways—just as no actual construction in the real world can perfectly produce the object it is intended to generate, it is also the case that even a mathematically “incorrect” construction algorithm may, in some cases, produce a result that is close enough to be indistinguishable from what is sought.
Veronica’s question is thus more problematic than it seems at first. In seeking to understand why a given construction is valid, she (potentially) raises deep questions about the structure of our geometric knowledge, its contingency on certain conventions of definition and axiomatization, and the relationship between the ideal world of mathematical abstraction and the real world of experience and measurement.
Following this discussion, we turned to a close reading of item 15301 and noted that Veronica’s question (the “internal question”) is actually formulated in two not-quite-identical ways. It is first formulated as a request for an explanation of “why the construction works”, the item immediately reframes this as “How can we be sure that the line… is indeed perpendicular to the segment and passes through the midpoint?” Whereas the first question calls for an explanation, the second seeks a verification. Corresponding to these two questions, students might respond in one of two ways:
- Students might provide a mathematical argument for why the construction is a valid one, or
- Students might appeal to empiricism as a means of verifying that the product of the construction algorithm has the intended properties.
These two broad themes may be further subdivided into sub-themes. A mathematical argument may make use of synthetic methods (as, for example, in a traditional two-column proof), analytic methods (as in an argument that uses coordinate geometry to transform the geometric question into an algebraic one), or transformational approaches. Any of these approaches could be presented as either a formal proof or a less detailed argument that indicates the main points of what could go in a formal proof.
Likewise, an empirical approach to answering Veronica’s question could take different approaches, depending on whether the student perceives the underlying problem as a concern for user error or feels a degree of skepticism regarding the reliability of the method itself. In the former case, a response might emphasize the need to exercise caution when using the construction tools. In the latter case, a response might suggest using measurement tools to verify the result of the construction after the fact.
Finally, in our discussion of the external question (“How could Mr. Gómez explain that?”), we observed that a GeT student’s anticipation of Mr. Gómez’s response could draw on multiple domains of knowledge within the construct of Mathematical Knowledge for Teaching (Ball, Thames, & Phelps, 2008). Such a response might call upon Knowledge of Content and Curriculum (KCC), Knowledge of Content and Students (KCS), Knowledge of Content and Teaching (KCT), and Horizon Content Knowledge (HCT).
Thus, when we turn to the responses of the cohort of GeT students and instructors, we expect that we may find some or all of the following themes present:
- A theory-building disposition (Weiss & Herbst, 2015) —a sensitivity to the particular axiomatic structure in use for one’s theory of geometry, and an awareness that it is only one of many possibilities;
- A tendency towards skepticism—an awareness that constructions presuppose flawless operation with idealized tools that cannot be executed in the real world;
- An orientation towards pragmatism—a willingness to accept an imperfect construction as long as the result is close enough to the desired one;
- A mathematical argument, which may take the form of either a formal proof or an informal argument;
- An empirical disposition, which may take one of two forms:
- exercising caution in the use of tools and execution of the algorithm, or
- the use of measurement tools to verify the accuracy of the completed result;
- One or more knowledge domains within MKT.
In the next section, we describe the data sets in more detail and use the themes above to classify the responses of our students and instructors.
Data sources and methods
Assessment item 15301 was pilot tested in Spring 2021 with a cohort of 47 GeT students associated with six different instructors and/or universities. Seven of those students provided no response to the item; another eight responded with “I don’t know,” “Unsure,” or similar responses. The present analysis is based on the responses of the remaining 32 students. The item was included in an assessment conducted online using a Qualtrics survey. Because the assessment platform only allowed responses in the form of typed text, many modes of communication that might otherwise have been called for (including not only diagrams but also mathematical notation) were not available to respondents. For this reason, it seems prudent to be somewhat skeptical of the data; it is likely that students’ responses may have been quite different (and, one suspects, richer) had the assessment been administered in a paper-and-pencil format.
After the assessments were administered, a group of six college-level Geometry instructors with varying levels of teaching experience came together in Summer 2021 for a virtual workshop organized around examining students’ responses to the assessment items. Among these instructors were both mathematicians and mathematics educators; most of them had taught a course specifically targeted at Geometry for Teachers (GeT), although at least one taught a Geometry course that was not explicitly “for teachers.” In each meeting of the workshop, participants were asked a series of questions about four assessment items. Participants were asked to describe not only what they would consider to be a good response to the item but also what they expected a student might say in response. Participants were then shown the set of student responses and asked to describe what they saw in those responses.
In analyzing the two sets of responses, I used the following methodology. First, each student response was tagged with one or more of the following codes: THEORY-BUILDING, SKEPTICISM, PRAGMATISM, ARGUMENT, CAUTION-TOOLS, MEASUREMENT, and MKT. These seven codes correspond to the themes enumerated at the end of the previous section. A response would be coded with a given tag if it could be construed as invoking or alluding to the corresponding theme. Thus, for example, the tag ARGUMENT was used for any response that seemed to be suggesting or calling for a formal proof, whether or not such a proof was actually provided. The same codes were then used to tag GeT instructors’ responses. In principle, a single item could be tagged with more than one code; in practice, none of the items were found to contain evidence of more than one of the themes.
Student responses to Item 15301
Of the 32 responses from GeT students, eight were not tagged with any of the codes above. Most of these amounted to nothing more than a restatement of the property in question: for example, “By showing the slopes are perpendicular and that the two segments are equal,” “Show that it creates a 90 degree angle,” and “A perpendicular line creates a 90 degree angle.” Such responses do not explain, or even hint at, how one would show those properties. Another response consisted simply of the two words “the center.” It is impossible to know what the respondent intended by this or if it was the result of an error in entering their response. The longest untagged response read:
The circles we create help us visualize. Consider that these two circles would overlap. We can assume that inside this overlap is where the midpoint is. By constructing the perpendicular bisector in this manner, this is the best way to ensure that it is consistent.The circles we create help us visualize. Consider that these two circles would overlap. We can assume that inside this overlap is where the midpoint is. By constructing the perpendicular bisector in this manner, this is the best way to ensure that it is consistent. (Response A53)
Although this student had quite a lot to say, I was unable to interpret exactly what was intended by this response.
Of the remaining 24 items, 16 responses were tagged with the code ARGUMENT. None of these responses were fully-developed mathematical proofs, but some of these responses sketched out an argument that could be plausibly interpreted as the outline of one. For example, one response (A19) read, “He could use the perpendicular bisector theorem.” Although lacking in details, this does indicate an efficient method for proving that the construction is valid. Another student responded:
Show how the two circles have the same radius meaning the intersections are the same distance away from each point and there are two points of intersection which are necessary for the creation of a line. (Response A29)
The argument here is not fully coherent, but it does seem clear that the student was at least attempting to provide some sort of mathematical argument or informal proof. Most responses tagged with the code ARGUMENT were of this sort. Although they did not contain a fully correct or convincing mathematical argument, they contained evidence that the student at least understood the question to be calling for one.
However, not all students understood the question as calling for a mathematical argument. Six responses indicated that the student understood the question as calling for some kind of empirical measurement, rather than a theoretical justification. Typical responses tagged with the MEASUREMENT code were:
- “Measure the segment before bisecting it and then measure it after bisecting” (A55)
- “Measure the angles around the intersection. If one of them is 90 degrees, then it is perpendicular. Then measure each side of the segment, and if they are equal then it is a perpendicular bisector.” (A51)
- “Use a compass and a ruler to measure.” (A32)
In addition to these, two responses were tagged with the CAUTION-TOOLS code:
- “Making sure you accurately use your geometric construction tools and are precisely lining up to each point.” (A5)
- “With the use of a straightedge it can be sure to be perpendicular” (A26)
These three codes — ARGUMENT, MEASUREMENT, and CAUTION-TOOLS — were, in fact, the only three codes used. Thus, at a very coarse level of description, we can say that about half of the responses indicated that the student understood the question as calling for a mathematical argument of some sort; a quarter of the responses indicated that the student interpreted the question as calling for some kind of appeal to empiricism; and the remaining quarter contained either no meaningful content or none that could be classified. None of the student responses gave any indication that students were thinking about any of the foundational questions discussed in Part 1 of this essay or drawing directly on any of the specialized content knowledge domains discussed in Part 2.
Instructor responses to Item 15301
- What do instructors think is necessary knowledge for Item 15301?
In the summer workshop, the six instructors were initially asked the question “What is the knowledge needed to answer this item?” All six instructors either provided a mathematical proof or discussed what prior knowledge one would need in order to provide a mathematical proof; every instructor interpreted the item as calling for a mathematical argument. Examples of these responses are:
- “The construction forms a rhombus and the diagonals of a rhombus are perpendicular and bisect each other. A point equidistant from the endpoints of a segment is on the perpendicular bisector of the segment.”
- “Reflexive property (segments), then SSS, then CPCTC, then SAS, then linear pair of angles.”
- “Knowing that the diagonals of a rhombus are perpendicular and bisect each other gives the result immediately (I’ll note that in my years of teaching constructions, few GeT students remember this since we haven’t discussed it in class). More often, they take an approach like the one [other instructor] mentions: using two triangle congruences to show constructed line is perpendicular to AB and that it bisects AB. So the argument requires experience/understanding of triangle congruence proofs.”
As the three examples above show, responses varied significantly in how much detail was provided and how many alternatives the workshop participants entertained. However, each of these responses understands the prompt as an invitation to provide a mathematical proof or, at least, the outline of one.
Two instructors included in their responses some reference to the fact that what counts as a proof may vary depending on the type of geometry being taught (synthetic, analytic or transformation-based). One such response, for example, included the following:
The most efficient way to solve this problem is to know that a point is on the perpendicular bisector of AB if and only if it is equidistant from A and B. One either needs to quote the result, or to prove it… A transformation-based approach could work as well: the initial figure, AB, and the construction protocol, are both invariant under the act of reflection across the perpendicular bisector of AB, and therefore the line constructed must be as well. Therefore the line constructed is the perpendicular bisector of AB.
None of the instructors made explicit reference to the situated aspect of the item prompt; they did not refer to the fact that Mr. Gómez’s response was to be addressed to a student in a high school classroom. We could imagine, for example, responses that referred to ways of knowing or misconceptions that are common among secondary students or that discussed the fact that what would work as an appropriate answer might depend on the curriculum being taught, etc. The fact that none of the GeT instructors, when asked “What knowledge is needed to answer this item?”, responded “They need to know something about how students learn proofs” or “They need to know that proving constructions is not common in many secondary curricula” suggests that they approached this problem primarily as a mathematical task, not as a task of teaching. In terms of the a priori analysis in the first part of this paper, we could say that they discussed the knowledge needed to answer the internal question but not the knowledge needed to answer the external question.
- How do instructors expect GeT students to respond to item 15301?
Workshop participants were next asked to anticipate what type of responses they would receive from GeT students. Only four of the instructors responded to this question, but all four of them expressed an anticipation that students would provide a mathematical argument of some sort. The four responses were:
- “The arcs intersect at two points that are equidistant from the endpoints of the segment (by construction). Therefore, when a line is drawn using those two points, a perpendicular bisector is formed.”
- “One student might reference parallel lines followed with a rotation of 90 degrees from the midpoint makes perpendicular lines. To explain perpendicular bisectors. Another student might use the the curvature in the first quadrant in relation to the intersecting lines to find 90 degrees. Then conclude the intersecting lines are perpendicular. Another student may not want to use the curvature of the lines and reason with triangles.”
- “I would guess that a few people might come up with a correct deductive proof. More if they were in a course that covered constructions and specifically emphasized the ‘proving why it works’ step of constructions. (It is interesting that this question is premised on a teacher teaching the constructions without that vital last step.) I would expect that many would say something like, ‘you can see this will always happen because they are the same distance away.’ Such an argument might actually have more merit than it would initially appear since it would relate to the symmetries.”
- “I would expect most GeT students would start proving pairs of triangles congruent to each other. Quoting the perpendicular bisector theorem seems unlikely to me, as does recognizing this as a rhombus and citing the property of the diagonals of a rhombus.”
While there are clear differences among these responses, particularly with respect to how much variation in student responses the individual instructors anticipate, they all share an interpretation of the problem as calling for a mathematical proof of some sort. None of the instructors expected that the item would call forth an empirical response from a GeT student nor that it would evoke a discussion of theoretical considerations, secondary students’ conceptions of geometry, variations in curriculum, or any other SCK-related topics.
- What do instructors notice in GeT students’ responses?
At this point in the workshop, instructors were shown the 32 student responses described above and were asked to comment on which ones included evidence that the students did, or did not, have the knowledge needed to respond to the prompt. In the ensuing discussion, one instructor identified just four responses as containing at least some evidence that the student contained sufficient knowledge to answer the question. Another instructor described three responses as being “on the right track.” (It is, perhaps, noteworthy that these two instructors identified only a single student in common.) Yet a third instructor wrote:
It is interesting that no one tried to answer this prompt! None of these are as good as I might hope. I wonder if any of them did justifications of constructions in their courses. It doesn’t look like anyone remembered having done this one. But, at the same time, some of these are not so far off. A19 is correct and is a reasonable answer. (The perpendicular bisector theorem says a point in on a perpendicular bisector of AB if and only if it is equidistant from A and B.) A7 is also close to this idea. A34 is close to an idea of the beginning of the symmetry proof.
Two instructors zeroed in on an empirical conception of mathematical justification as being a significant feature of the GeT students’ responses. One of these instructors wrote, “There are (at least) two really important misconceptions that I see: (1) If it looks correct, then it is correct because we constructed it with straightedge and compass (A5, A25). (2) We can measure it with a ruler or a protractor to see that it’s correct (A15, A17, A55).”
- What other kinds of knowledge do instructors see as potentially embedded in Item 15301?
Finally, instructors were asked to comment on which Student Learning Objectives (SLOs) were potentially involved in answering Item 15301 and to add any additional comments on the item. Instructors identified SLO 8 (“Be able to perform basic Euclidean straightedge and compass constructions and be able to provide justification for why the procedure is correct”), SLO 1 (“Derive and explain geometric arguments and proofs in written and oral form”), SLO 5 (“Understand the role of definitions in mathematical discourse”), SLO3 (“Understand the ideas underlying the typical secondary geometry curriculum well enough to explain them to their own students and use them to inform their own teaching”), and,—at least potentially—SLO 7 (“Demonstrate knowledge of Euclidean Geometry, including the history and basics of Euclid’s Elements, and its influence on math as a discipline”).
Instructors also observed that the item contained two different statements of (ostensibly) the same question:
The statement, ‘why something works’ and ‘how can we be sure it is correct’ are not the same thing. I think most GeT students responded to the second part of the question, not the first part of the question. And I do think that second question connects more to the CCSS-M math standards (i.e. using appropriate tools strategically).
When prompted to consider what other kinds of knowledge instructors see as potentially embedded in the item, some instructors did identify issues related to student thinking and curriculum—issues that, as noted above, were not evoked by the prompt, “What do students need to know in order to answer this question?” For example, two instructors observed that the appeal to empiricism is somewhat unsurprising, given what is common in secondary Geometry classrooms. One wrote:
Perhaps GeT students are trying to imagine themselves in the hypothetical situation of responding to a student who has not yet learned triangle congruence proofs etc. I think this is pretty typical for how constructions are introduced; students are taught the steps as they are learning the definitions for the geometric objects… So the ‘how can we be sure it is correct’ regards what is available to those students at the time: getting empirical evidence using other tools they know how to use that the construction meets the requirements of the definition of perpendicular bisector.
The other wrote:
I also think this question is potentially very revealing of the different proof schemes that GeT students hold, in particular their tendency to default to empiricism in the context of construction problems. Whether we call that a ‘knowledge’ issue is another matter; I would prefer to describe this in terms of ‘different ways of knowing’, rather than ‘correct’ / ‘incorrect’. But we do know that justifying a construction with a proof is (bizarrely) not normal in the classroom, no matter how much we would like it to be.
Discussion
Despite instructors’ rather pessimistic appraisals of the GeT students’ work, it bears repeating that roughly half of all responses indicated that students interpreted the prompt as calling for some kind of mathematical argument. It is true that most of the arguments they offered fell far short of what most GeT instructors would accept as a correct proof; however, we should, perhaps, take some comfort in the evidence that a significant portion of the students have at least been enculturated into mathematical practice and its sensibilities enough that they understand that a question in the form of “How can we be sure that this works?” is supposed to be answered with a proof.
In contrast, it seems significant that none of the instructors anticipated that GeT students would respond to the prompt with an empirical strategy, either one that focuses on controlling the means of production or on one that emphasizes measuring the output of the algorithm. This may indicate a substantial “expert blind spot” for GeT instructors; we are so thoroughly accustomed to approaching mathematics teaching from the perspective of what is mathematically correct that we forget that these cultural norms do not come naturally to students and should not be taken for granted. If we, as GeT instructors, think that a proof-centric approach to mathematical validation is the sine qua non of secondary Geometry instruction, it is vital that we recognize that our future secondary teachers do not automatically share that value and that other forms of validation (such as an appeal to authority or empiricism) need to be not only anticipated but also confronted directly in the GeT classroom.
It also seems significant that issues related to the situated nature of the task—the fact that the external question is not just a mathematical problem but a problem of mathematical teaching—were not mentioned by any of the GeT students nor by any of the GeT instructors in their response to the initial question “What do students need to know in order to answer this question?” This suggests that students and instructors alike may tend to default to the role of mathematical problem-solvers, rather than consider other specialized domains of knowledge that are important for mathematical teaching. It may be worth considering whether those other domains of knowledge—knowledge of how students think about proof, of how different curricula do or do not establish relationships between geometric constructions and axiomatic systems, etc.—could or should play a larger role in the objectives of a Geometry for Teachers course.
References
Ball, D.L., Thames, M.H. & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education 59(5), 389-407.
Weiss, M., & Herbst, P. (2015). The role of theory building in the teaching of secondary geometry. Educational Studies in Mathematics, 89(2), 205-229.


